Modeling surface imperfections in thin films and nanostructured surfaces

نویسندگان

  • P.-E. Hansen
  • J. S. Madsen
  • S. A. Jensen
  • M. H. Madsen
  • M. Karamehmedovic
چکیده

Accurate scatterometry and ellipsometry characterization of non-perfect thin films and nanostructured surfaces are challenging. Imperfections like surface roughness make the associated modelling and inverse problem solution difficult due to the lack of knowledge about the imperfection on the surface. Combining measurement data from several instruments increases the knowledge of non-perfect surfaces. In this paper, we investigate how to incorporate this knowledge of surface imperfection into inverse methods used in scatterometry and ellipsometry via Rigorous Coupled Wave Analysis. Three classes of imperfections are examined. The imperfections are introduced as periodic structures with super cell periods ten times larger than the simple grating period. Two classes of imperfections concern the grating and one class concern the substrate. It is shown that imperfections of a few nanometers can severely change the reflective response on silicon gratings. Inverse scatterometry analysis of gratings with imperfections using simulated data with white noise has been performed. The results show that scatterometry is a robust technology that is able to characterize grating imperfections provided that the imperfection class is known.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Enhanced Photocatalytic Activity of Sol-Gel Derived Coral-like TiO2 Nanostructured Thin Film

To enhance photocatalytic degradation of organic pollutants, coral-like TiO2 nanostructured thin films were chemically synthesized through the sol-gel method. The fabricated thin films were characterized by Scanning Electron Microscopy (SEM), X-Ray Diffraction (XRD), nitrogen sorption isotherms, mercury porosimetry measurements, and UV-Vis Diffuse Reflectance Spectrum (DRS). The ...

متن کامل

Characterization of nanostructured SnO2 thin film coated by Ag nanoparticles

Nanostructured SnO2 thin films were prepared using Electron Beam-Physical Vapor Deposition (EB-PVD) technique. Then Ag nanoparticles synthesized by laser-pulsed ablation were sprayed on the films. In order to form a homogenous coated of SnO2 on the glass surface, it was thermally treated at 500°C for 1 h. At this stage, the combined layer on the substrate was completely dried for 8 h in the air...

متن کامل

Studies on sol-gel dip-coated nanostructured ZnO thin films

Nanostructured ZnO thin films were prepared by sol-gel dip coating technique. Zinc acetate and ammonium hydroxide were used as precursors and ethanol was as solvent. Ammonium hydroxide (NH4OH) solution was added drop-wise under vigorous stirring to obtain the sol-gel of different pH (varying from 6.9 to 7.2). ZnO thin films were obtained by dipping the glass substrates for few seconds and then ...

متن کامل

Annealing Temperature Effects on the Optical Properties of MnO2: Cu Nanostructured Thin Films

   In this work, the effect of annealing temperature on the microstructure, morphology, and optical properties of Cu-doped nanostructured MnO2 thin films were studied. The thin films were prepared by sol-gel spin-coating technique on glass substrates and annealed in the air ambient at 300, 350, 400 and 450 °C temperatures. The structural, morphological and optical properties of t...

متن کامل

Effects of UV irradiation treated polycarbonate substrates on properties of nanocrystalline TiO2 sol-gel derived thin films

In this study, in order to achieve effective coating of the homogeneous titanium dioxide (TiO2) thin film, UV irradiation pre-treatment was carried out to activate PC surfaces before coating. Sol-gel-based nanocrystalline TiO2 thin films were prepared by employing tetrabutyl-titanate as a precursor. Nanocrystalline TiO2 thin films were deposited by sol-gel spin coating on the treated substrates...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017